
FirePath™ Processor Architecture
and Microarchitecture

Sophie Wilson

Chief Architect, Broadcom DSL BU
Rich Porter

Staff Design Engineer, Broadcom DSL BU

FirePath History

• FirePath - new processor designed by Element 14

• Element 14 formed 26th July 1999
• Element 14 acquired by Broadcom Nov 2000

• FirePath targetted at “Bulk Data Processing”
• First FirePath SoC is the BCM6410, a single chip

12-channel DSL digital transceiver

General Purpose
Registers

Instructions

Data M em ory

SIMD MAC UNIT

SIMD ALU

SIMD LSUPredicate
Registers

SIMD LSU

SIMD MAC UNIT

SIMD ALU

MAC
Reg isters

MAC
Reg isters

FirePath Processor

FirePath Parallelism

• Two forms of parallelism:
– LIW: two identical 64-bit data-paths (compiler friendly)
– SIMD: each data-path is SIMD-laned

FirePath Architecture: LIW

• 128-bit execution width via LIW/SIMD machine
– Instruction level parallelism exploited via two

symmetric 64-bit RISC pipelines with 64 common 64
bit registers

– Data parallelism exploited via 2, 4 or 8-way SIMD
within each RISC pipeline

FirePath Architecture: ISA

• Instruction set
– Complete and largely orthogonal SIMD set
– Supports DSP and control code
– Specific support for communications algorithms such

as Galois field arithmetic

FirePath Architecture: Compute

• Accessible compute power
– Large general purpose register file (64 off 64-bit

registers)
– Integrated multiply-accumulate (MAC) unit with

dedicated accumulator file
– Per clock tick, can perform and sustain for example:

8x16-bit load operations (load 128 bits),
8x16-bit MAC operations,
1 address pointer update

SIMD Predication

• Predicate bit per byte lane:

8 bit predicate register

7 0

B7 B6 B5 B4 B3 B2 B1 B0

7 6 5 4 3 2 1 0

15 823 1631 2439 3247 4055 4863 56

What’s not in FirePath Architecture?

• Precise exceptions, precise interrupts

• “DSP” address modes
• “DSP” zero-overhead branches

• Fixed binary coding
• Big-endian support

FirePath Instruction Overview
Loads: LD{S}B LD{S}H LDW LDL LDL1 LDL2
Stores: STB STH STW STL STL1 STL2
Branch: SBPF SBPFL SBPT SBPTL
Arith: ADDB ADDH ADDW ADDWB ADDWT

CMP<>B CMP<>H CMP<>W
SUBB SUBH SUBW SUBWB SUBWT

Logic: ANDB ANDH ANDW ANDL
BICB BICH BICW BICL
EORB EORH EORW EORL
ORRB ORRH ORRW ORRL
TST<>B TST<>H TST<>W TST<>L

Misc: CNTB DEALB EVENH SUMG CLZW FFSW
Shift: ASLH ASRH ASLW ASRW ASLL ASRL

LSLH LSRH LSLW LSRW LSLL LSRL
RORH RORW RORL

Multiply- MACH MDCH MNCH MZCH
Acc: MACW MDCW MNCW MZCW

MULG MACG MULH MULW

Code example: FIR inner loop
;Perform MACs with maximal software pipelining - use old and load new at once
;Each stage moves input data on by a half word: 01234567 becomes 12345678
fir_inner_loop:

;MAC2s do 8 half word multiplies by first four coefficients in r7 half words 0..3
 MAC2SSH m0/m1, s01234567, r7.h0 : LDL2 s01234567, [input, #2]

MAC2SSH m0/m1, s12345678, r7.h1 : LDL2 s12345678, [input, #4]
MAC2SSH m0/m1, s23456789, r7.h2 : LDL2 s23456789, [input, #6]
MAC2SSH m0/m1, s3456789a, r7.h3 : LDL2 s3456789a, [input, #8]

;decrement loop counter, and load next set of r7 coefficients (all used by now)
SUBWBS inner_c, inner_c, #1 : LDL r7, [coeff_ptr, #8]

;MAC2s do 8 half word multiplies by first four coefficients in r7 half words 0..3
MAC2SSH m0/m1, s456789ab, r9.h0 : LDL2 s456789ab, [input, #10]
MAC2SSH m0/m1, s56789abc, r9.h1 : LDL2 s56789abc, [input, #12]
MAC2SSH m0/m1, s6789abcd, r9.h2 : LDL2 s6789abcd, [input, #14]
MAC2SSH m0/m1, s789abcde, r9.h3 : LDL2 s789abcde, [input, #16]!

;Test loop condition, and load next set of r9 coefficients (all used by now)
SBPFL p6.0, fir_inner_loop : LDL r9, [coeff_ptr, #16]!

FirePath™ Processor
Micro Architecture

Rich Porter

Staff Design Engineer,
Broadcom DSL BU

FirePath Introduction

• Instruction stream 64 bits
– In order issue
– Out of order completion

• SIMD predicated execution
– Single cycle arithmetic and logic
– 6 Cycle load store
– 7 Cycle multiply capable of back to back multiply

accumulate instructions

Micro Architecture Schematic

To
M em ory

To
M em ory

Bypasses

Logical Operations

Load Store

M ultip ly

Register File

Instruction Cache
40k by 5 -w ay

Fetch

Cross O ver

Decode

Issue

Bypasses

Logical Operations

Load Store

M ultip ly

Register File

Register File

• Instructions have high register bandwidth
– Each side may read three and write two general

purpose registers
p0.DEALB r0/r1, r2, r3/r4 : p0.DEALB r10/r11, r12, r13/r14

– x side {src r2,r3,r4 dest r0/r1}, y side {src r12,r13,r14 dest r10/r11}

– Instruction also implies resource availability
MUL2W r0/r1, r2/r3, r4/r5 : LDL2 r6/r7, [r8]

– x side {lsu{src r8, dest r7}, mul_pipe{src r2, r4, dest r0}}
– y side {lsu{src r8, dest r6}, mul_pipe{src r3, r5, dest r1}}

• Requirement of six read and four write ports
– Ten port register file represents design challenge

• Write ports also have byte enable

Register Files

• Reduce wiring by duplication
– Two datapaths, two register files
– Pushing some timing problems back to WB stage

• Read ports perform some decode
– Instructions that require ‘pair’ of values decoded by

register file which presents both values
– Program Status Register determines which high order

registers to use

• Early presentation of WB addresses allows drop
through
– Reducing bypassing always a good thing

Bypassin g

• FirePath is almost fully bypassed
– Single cycle instructions
– zero penalty same side

DEALB r0/r1, r2, r3/r4 : something

DEALB r8/r9, r2, r0/r1 : something else

– single cycle penalty other side
AND r0, r1, r2 : something

something else : AND r3,r0,r4 ; stop for 1 cycle
; (in order issue)

– Multiple cycle instructions
– value available as soon as instruction completes (same side)
– plus one cycle other side

Bypassin g Schematic

Execution
Unit

Execution
Unit

R egister
F ile

R egis ter
F ile

Hierarchical Bypassin g

• Predication causes complication
– A register value can exist in parts in different places

p0.AND r0, r1, r2 ; p0 == 0x1a

p1.AND r0, r3, r4 ; p1 == 0x50

 ORR r5,r0,r6 ; r0 in {register file, WB, EX1}

77 66 55 44 33 22 11 00R0 ==77 66 55 44 33 22 11 00R0 ==

Execution
Unit

R egister
F ile

77 66 55 44 33 22 11 00R0 ==

77 66 55 44 33 22 11 00R0 ==

Multiply Pipeline

• Each side has seven stage pipe
– Capable of two 32 bit or four 16 bit multiplies per

instruction
– Can issue instructions back to back

• Two registers for multiply accumulate instructions
– 40 bit for 16 bit data, 64 bit for 32 bit data
– Distinct per side, no hazards

• Shifting and rounding stages
• Pipelines are independent

– In order issue, out of order completion

Multiply Pipeline more

• 16 bit

• Move

• 32 bit sums partial 16 bit products in MUL2

SHIFT0 W BSHIFT1 SHIFT3MUL0 ACC0MULH

MACH

MUL1

MUL0 W BMUL1

SHIFT0 W BSHIFT1 SHIFT3MUL0 ACC0MULW

MACW

MUL1

MUL0 W BMUL1

MUL2

MUL2

SHIFT0 W BSHIFT1 SHIFT3ACC0MMV

Load Store Pipeline

• Memory mapped into two regions
– Local memory
– Peripheral bus

• Address generated in first two cycles
– Option of writing this value back
– Instructions split to local memory or peripheral memory

and index register writeback

M EM 0

W B

... M EM n

M EM 0 M EM 1 M EM 2

DataSHIFT W BADDR0 ADDR1 Address

Load Store Pipeline local memory

• Local memory partitioned to enable pseudo dual
port behaviour for concurrent accesses
– Dual Load Store units produce two memory requests
– These requests can both be misaligned
– Code can be constructed so requests do not map to

overlapping memory blocks
• In the event of a clash one side is held back

– No flow control beyond ADDR1 for local memory
enables faster cycle times

– Shifter aligns load data
• Also sign extends signed loads

Implementation Methodolo gy

• 100% cell based design
– In House standard cell library
– Highly automatic library build

• Flexible implementation style
– partial gate level design
– partial preplacement
– partial prerouting

• Uniformity where it counts
– design captured in RTL
– all netlists formally shown be equivalent

